Теплопроводность меди и ее сплавов – плюсы и минусы

  • 11 октября 2018 г. в 14:36
  • 659

Теплопроводность меди и ее сплавов – плюсы и минусы

Одним из важнейших узлов любого отопительного котла является первичный теплообменник, в котором тепловая энергия от горячих продуктов сгорания топлива передаётся теплоносителю. Именно от характеристик этого компонента во многом зависят эксплуатационные характеристики оборудования: его КПД и экономичность, срок службы и стоимость. В условиях ожесточённой конкуренции между производителями все узлы бытовых котлов имеют тенденцию к упрощению конструкции и удешевлению. Вместе с тем существует стабильный спрос на газовые премиальные котлы с медным теплообменником. Почему потребители выбирают их, несмотря на высокую цену, и в чём преимущества меди как конструкционного материала?

Теплопроводность меди и ее сплавов – плюсы и минусы

Металл металлу рознь

Материал, из которого сделан теплообменник, является тем посредником, который передаёт тепловую энергию от продуктов сгорания теплоносителю.

В процессе эксплуатации котла он в течение многих месяцев отопительного периода должен без снижения прочностных характеристик выдерживать высокие температуры (до 400–600 oС).

Также материал теплообменника контактирует с двумя средами — раскалёнными дымовыми газами и теплоносителем (как правило, водой). Поэтому к материалу предъявляются весьма жёсткие требования, которым отвечает узкий перечень металлов и сплавов.

В настоящее время для изготовления бытовых газовых котлов применяются три материала: сталь, чугун и медь. У каждого из них есть свои сильные и слабые стороны.

Самый распространённый и бюджетный вариант — это стальные теплообменники. Сталь обладает редким сочетанием высокой пластичности и прочности даже при воздействии высоких температур и механических нагрузок.

Эта характеристика материала теплообменника особо важна, когда он подвергается тепловому воздействию.

В зоне высоких температур в металле образуются тепловые напряжения, и только пластичность не даёт появиться трещинам.

Но у стальных теплообменников есть и серьёзные недостатки: они подвержены коррозии, причём как со стороны дымогарных труб, так и со стороны теплоносителя. Чтобы увеличить срок службы, производители увеличивают толщину стенки теплообменника, что снижает КПД и повышает расход топлива.

Теплопроводность меди и ее сплавов – плюсы и минусы

Чугун гораздо медленнее стали подвергается коррозии при соприкосновении с химически активными средами. Но из-за сниженной пластичности при использовании этого металла предъявляются жёсткие требования к режимам эксплуатации газового оборудования. Резкие перепады температур могут вызвать появление трещин.

Так, например, для разных моделей с чугунным теплообменником разность температур теплоносителя в подающей и обратной линиях отопительного контура не может превышать 20–45 oС. Чтобы этого достичь, используют сложные системы подмеса горячего теплоносителя. Также это накладывает жёсткие ограничения на стабильность работы циркуляционного насоса.

Ещё один традиционный материал для теплообменников котельного оборудования — это медь. Она имеет уникальное сочетание физико-химических свойств, что делает её почти идеальным материалом для этих целей.

Прежде всего медь выделяется исключительно высокой теплопроводностью — 385 Вт/м*К (выше только у серебра).

Для сравнения: теплопроводность чугуна составляет 50–60 Вт/м*К, а стали — от 47 Вт/м*К и ниже (в зависимости от температуры и марки стали).

Также весьма ценна высокая устойчивость меди к коррозии. В процессе эксплуатации медного теплообменника на поверхности металла появляется тонкая, но плотная плёнка оксида, которая защищает нижележащие слои от коррозии.

Теплопроводность меди и ее сплавов – плюсы и минусы

Ещё одно важное свойство меди — очень низкий коэффициент шероховатости, который в 133 раза ниже, чем у стали. Это имеет два следствия: низкое гидродинамическое сопротивление медных труб и существенно меньшую скорость зарастания сажей и загрязнениями.

Среди недостатков этого металла выделяется один — высокая цена. Чистая медь до 15–20 раз дороже стальных сплавов, используемых для теплообменников, что автоматически относит котлы с применением большого количества меди к высокому ценовому сегменту.

Теплообменники с оребрением и их проблемы

Выбор материала для первичного теплообменника во многом определяет его конструкцию. В частности, низкую теплопроводность стали и чугуна разработчики отопительного оборудования компенсируют увеличением поверхности теплообмена.

Именно эта идея легла в основу самых распространённых в бытовых котлах трубчатых теплообменников с оребрением. На изогнутой (S-образной) трубе вертикальными рядами установлено множество пластин. Такой теплообменник располагается в верхней части камеры сгорания.

Через узкие просветы между пластинами снизу вверх проходят дымовые газы, отдавая энергию теплоносителю.

Помимо стали, для изготовления таких теплообменников изредка используют медь. В двухконтурных котлах некоторых производителей, до сих пор применяется битермические теплообменники: во внешней медной трубе с оребрением циркулирует теплоноситель, а внутренняя труба служит для нагрева воды для ГВС.

Для повышения мощности и КПД в теплообменниках такого типа просвет между пластинами оребрения может составлять всего 1,5–2,5 мм. Это существенно увеличивает скорость засорения просвета сажей и копотью (продуктами сгорания природного газа), что препятствует полному сгоранию газа и приводит к увеличению расхода топлива.

Малое внутреннее сечение труб также повышает чувствительность этого узла к накоплению известковых отложений в просвете. Отложение солей жёсткости и грязи внутри теплообменника значительно снижает теплообмен из-за уменьшения теплопроводности стенок и нарушения циркуляции теплоносителя.

Подсчитано, что всего 1 мм известкового осадка на стенках теплообменника уменьшает производительность котла в среднем на 5 %. Но что гораздо опаснее, минеральные отложения нарушают процесс охлаждения тонких стенок теплообменника, которые из-за этого могут прогореть.

В результате котлы с данным типом нуждаются в более частом и трудоёмком сервисном обслуживании: очистке камеры сгорания и промывке от накипи.

Теплопроводность меди и ее сплавов – плюсы и минусы

Медный теплообменник: традиции и технологии

Использование меди с её экстраординарной теплопроводностью позволяет отказаться от схемы теплообменника в виде оребрённой трубы в пользу более простой и надёжной конструкции. Её принцип позаимствован у традиционного самовара, у которого дымогарная труба проходит через ёмкость для воды.

«С 1948 года, когда изобретатель Морис Фриске выпустил первый французский газовый котёл HYDROMOTRIX, медный трубчатый теплообменник стал визитной карточкой продукции нашей компании, — рассказывает Роман Гладких, технический директор FRISQUET, лидера французского рынка отопительного оборудования. — Его схема принципиально отличается от столь распространённых трубчатых теплообменников с оребрением. Основой теплообменника является медное котловое тело большой ёмкости, внутри которого проходят трубки для отведения дымовых газов. В них стоят турбуляторы (рассекатели) из нержавеющей стали, которые снижают скорость дымовых газов для повышения теплоотдачи».

В результате получается массивный теплообменник цилиндрической формы, на производство которого расходуется 25 кг чистой меди. Для сравнения: стальные аналоги с оребрением сопоставимой мощности весят до 5 кг. Такой теплообменник работает без температурных шоков в более мягких и щадящих режимах, чем тонкая трубка с оребрением.

Описанная конструкция теплообменника имеет целый ряд важных последствий. Благодаря стойкости к коррозии и пластичности меди срок службы этого узла превышает 20 лет. Диаметр каждой дымогарной трубки составляет 30 мм, что делает их гораздо менее подверженными накоплению копоти.

За один отопительный сезон сужение просвета у теплообменников с оребрением может достигать 40 % (против 3% у трубчатых).

Основываясь на данных, накопленных в европейских странах за несколько десятилетий эксплуатации медных трубчатых теплообменников, можно сделать вывод, что они имеют в среднем вдвое больший срок службы по сравнению со стальными аналогами с оребрением.

Теплопроводность меди и ее сплавов – плюсы и минусы

Кроме того, именно медные трубчатые теплообменники позволяют достигать максимального КПД — 95 %, что приводит к значительной экономии энергоресурсов и снижению затрат на эксплуатации котла.

Уникальная конструкция с котловым телом большой ёмкости значительно расширяет функциональность отопительного оборудования. Так, в двухконтурных котлах FRISQUET вторичные теплообменники выполняются в виде медных змеевиков, расположенных внутри котлового тела.

В результате все котлы этого производителя в стандартной комплектации позволяют подключать дополнительный бойлер или второй и третий отопительные контуры.

Например, один отопительный контур может обеспечивать теплом настенные радиаторы (температура теплоносителя — до + 85 oС), а второй — системы теплых полов (+20–45 °С).

Выбор для потребителя

Наличие в котле медного трубчатого теплообменника является хорошим ориентиром для того, кто ищет надёжное и экономичное решение для своего объекта недвижимости. Однако чтобы сделать ответственный выбор, нужно обращать внимание и на другие нюансы.

Сертификация производителя по стандарту ISO 9001. Для покупателя это означает, что котёл прошёл многоступенчатый контроль качества при производстве.

«На нашем заводе, сертифицированном по стандарту ISO 9001, все этапы, от приёмки компонентов и исходных материалов от сторонних поставщиков до финальной сборки агрегатов, имеют многоступенчатый контроль. Каждая произведённая операция отмечается персональным клеймом того рабочего, который её выполнял, — говорит Роман Гладких (FRISQUET). — После завершения сборки каждый собранный котёл попадает на тестовый стенд, где проходит проверку по 15 параметрам. Кроме того, в сертифицированной лаборатории по стандарту ISO45001, тестируются не только исходные компоненты, но и в непрерывном режиме на специальных стендах ведутся ресурсные испытания оборудования».

  • Наличие в конструкции котла систем безопасности, включая датчики давления теплоносителя, температуры теплоносителя, газа и опрокидывания тяги, а также ионизационного контроля пламени.
  • Наличие интеллектуальных функций — возможность выбора сценариев, программирования и дистанционного контроля работы котла, что существенно повышает экономичность системы отопления и увеличивает её ресурс.
  • Наличие в России сети авторизованных дистрибьюторов, которые смогут установить, произвести пусконаладочные работы и затем осуществлять сервисное обслуживание и гарантийный ремонт котла.

Как мы видим, медь как конструкционный материал для теплообменников котлов имеет множество неоспоримых преимуществ. В таком оборудовании заинтересованы частные и корпоративные потребители, для которых надёжность, низкие эксплуатационные затраты и долгий срок службы котла имеют первостепенное значение.

Источник: https://www.elec.ru/articles/metall-metallu-rozn-preimushestva-mednyh-teploobme/

Медь как металл и сырье в строительстве: ее особенности и нюансы обработки

Теплопроводность меди и ее сплавов – плюсы и минусы

В большей части промышленных отраслей используется такой металл, как медь. Благодаря высокой электропроводности без этого материала не обходится ни одна область электротехники. Из нее образуются проводники, обладающими отличными эксплуатационными особенностями. Помимо этих особенностей медь обладает пластичностью и тугоплавкостью, устойчивостью к коррозии и агрессивным средам. И сегодня мы рассмотрим металл со всех сторон: укажем цену за 1 кг лома меди, поведаем о ее использовании и производстве.

Медь представляет собой химический элемент, носящийся к первой группы периодической системы имени Менделеева. Этот пластичный металл имеет золотисто – розовый цвет и является одним из трех металлов с ярко выраженным окрашиванием. С давних времен активно используется человеком во многих областях промышленности.

Главной особенностью металла является его высокая электро- и теплопроводность. Если сравнивать с другими металлами, то проведение электрического тока через медь выше в 1,7 раз, чем у алюминия, и почти в 6 раз выше, чем у железа.

Медь имеет ряд отличительных особенностей перед остальными металлами:

  1. Пластичность. Медь представляет собой мягкий и пластичный металл. Если брать во внимание медную проволоку, она легко гнется, принимает любые положения и при этом не деформируется. Сам же металл достаточно немного надавить, чтобы проверить эту особенность.
  2. Устойчивость к коррозии. Этот фоточувствительный материал отличается высокой устойчивостью к возникновению коррозии. Если медь на длительный срок оставить во влажной среде, на ее поверхности начнет появляться зеленая пленка, которая и защищает металл от негативного влияния влаги.
  3. Реакция на повышение температуры. Отличить медь от других металлов можно путем ее нагревания. В процессе медь начнет терять свой цвет, а затем становиться темнее. В результате при нагреве металла он достигнет черного цвета.
  • Благодаря таким особенностям можно отличить данный материал от латуни, олова, бронзы и других металлов.
  • Видео ниже расскажет вам про полезные свойства меди:
  • Преимуществами данного металла являются:
  • Высокий показатель теплопроводности;
  • Устойчивость к влиянию коррозии;
  • Достаточно высокая прочность;
  • Высокая пластичность, которая сохраняется до температуры -269 градусов;
  • Хорошая электропроводность;
  • Возможность легирования с различными добавочными компонентами.
Читайте также:  Омд - обработка металлов давлением: способы и виды

Про характеристики, физические и химические свойства вещества-металла меди и ее сплавов читайте ниже.

Свойства и характеристики

Теплопроводность меди и ее сплавов – плюсы и минусы

Медь, как малоактивный металл, не вступает во взаимодействие с водой, солями, щелочами, а также со слабой серной кислотой, но при этом подвержена растворению в концентрированной серной и азотной кислоте.

Физические свойства метала:

  • Температура плавления меди составляет 1084°C;
  • Температура кипения меди составляет 2560°C;
  • Плотность 8890 кг/м³;
  • Электрическая проводимость 58 МОм/м;
  • Теплопроводность 390 м*К.

Механические свойства:

  • Предел прочности на разрыв при деформированном состоянии составляет 350-450 МПа, при отожженном – 220-250 МПа;
  • Относительное сужение в деформированном состоянии 40-60%, в отожженном – 70-80%;
  • Относительное удлинение в деформированном состоянии составляет 5-6 δ ψ%, в отожженном – 45-50 δ ψ%;
  • Твердость составляет в деформированном состоянии 90-110 НВ, в отожженном – 35-55 НВ.

При температуре ниже 0°С этот материал обладает более высокой прочностью и пластичностью, чем при +20°С.

Структура и состав

Медь, имеющая высокий коэффициент электропроводности, отличается наименьшим содержанием примесей. Доля их в составе может приравниваться 0,1%. С целью увеличения прочности меди в нее добавляют различные примеси: сурьма, цинк, олово, никель и прочее. В зависимости от ее состава и степени содержания чистой меди различают несколько ее марок.

Структурный тип меди может включать в себя также кристаллы серебра, никеля, кальция, алюминий, золота и других компонентов. Все они отличаются сравнительной мягкостью и пластичностью. Частичка самой меди имеет кубическую форму, атому которой расположены на вершинах F –ячейки. Каждая ячейка состоит из 4 атомов.

О том, где брать медь, смотрите в этом видеоролике:

В природных условиях данный металл содержится в самородной меди и сульфидных рудах. Широкое распространение при производстве меди получили руды под названием «медный блеск» и «медный колчедан», которые содержат до 2% необходимого компонента.

Большую часть (до 90%) первичного металла меди получают благодаря пирометаллургическому способу, который включает в себя массу этапов: процесс обогащения, обжиг, плавка, обработка в конвертере и рафинирование. Оставшаяся часть получается гидрометаллургическим способом, который заключается в ее выщелачивании разведенной серной кислоты.

Теплопроводность меди и ее сплавов – плюсы и минусыМедь активно используется в следующих областях:

  • Электротехническая промышленность, которая заключается, в первую очередь, в производстве электропроводов. Для этих целей медь должна быть максимально чистой, без посторонних примесей.
  • Изготовление филигранных изделий. Медная проволока в отожженном состоянии отличается высокой пластичностью и прочностью. Именно поэтому, она активно используется при производстве различных шнуров, орнаментов и прочих конструкций.
  • Переплавка катодной меди в проволоку. Самые разнообразные медные изделия переплавляются в слитки, которые идеально подходят для дальнейшей прокатки.

Медь активно используется в самых различных сферах промышленности. Она может входить в состав не только проволоки, но и оружия и даже бижутерии. Ее свойства и широкая сфера применения благоприятно повлияли на ее популярность.

Видео ниже расскажет о том, как медь может изменить свои свойства:

Источник: http://stroyres.net/metallicheskie/vidyi/tsvetnyie/med/kak-syire-v-stroitelstve.html

Теплопроводность сталь медь алюминий

Теплопроводность и плотность алюминия

В таблице представлены теплофизические свойства алюминия Al в зависимости от температуры. Свойства алюминия даны в широком диапазоне температуры — от минус 223 до 1527°С (от 50 до 1800 К).

Как видно из таблицы, теплопроводность алюминия при комнатной температуре равна около 236 Вт/(м·град), что позволяет применять этот материал для изготовления радиаторов и различных теплоотводов.

Кроме алюминия, высокой теплопроводностью обладает также медь.

У какого металла теплопроводность больше? Известно, что теплопроводность алюминия при средних и высоких температурах все-таки меньше, чем у меди, однако, при охлаждении до 50К, теплопроводность алюминия существенно возрастает и достигает значения 1350 Вт/(м·град). У меди же при такой низкой температуре значение теплопроводности становится ниже, чем у алюминия и составляет 1250 Вт/(м·град).

Алюминий начинает плавиться при температуре 933,61 К (около 660°С), при этом некоторые его свойства претерпевают значительные изменения. Значения таких свойств, как температуропроводность, плотность алюминия и его теплопроводность значительно уменьшаются.

Плотность алюминия в основном определяется его температурой и имеет зависимость от агрегатного состояния этого металла.

Например, при температуре 27°С плотность алюминия равна 2697 кг/м 3 , а при нагревании этого металла до температуры плавления (660°С), его плотность становится равной 2368 кг/м 3 .

Снижение плотности алюминия с ростом температуры обусловлено его расширением при нагревании.

В таблице приведены следующие теплофизические свойства алюминия:

  • плотность алюминия, г/см 3 ;
  • удельная (массовая) теплоемкость, Дж/(кг·град);
  • коэффициент температуропроводности, м 2 /с;
  • теплопроводность алюминия, Вт/(м·град);
  • удельное электрическое сопротивление, Ом·м;
  • функция Лоренца.

Удельная теплоемкость алюминия

Удельная теплоемкость алюминия существенно зависит от температуры и при комнатной температуре составляет величину около 904 Дж/(кг·град), что значительно выше удельной (массовой) теплоемкости других распространенных металлов, например таких, как медь и железо.

Ниже приведена сравнительная таблица значений удельной теплоемкости этих металлов. Значения теплоемкости в таблице находятся в интервале температуры от -223 до 927°С.

По данным таблицы видно, что величина удельной теплоемкости алюминия значительно выше значения этого свойства у меди и железа, поэтому такое свойство алюминия, как возможность хорошо накапливать тепло, широко применяется в промышленности и теплотехнике, делая этот металл незаменимым.

Теплопроводность меди и ее сплавов – плюсы и минусы

Какой же все таки поставить радиатор? Я думаю каждый из нас задавался таким же вопросом придя на рынок или в магазин запчастей, осматривая огромный выбор радиаторов на любой вкус, удовлетворяющий даже самого извращенного привереды. Хочешь двух рядный, трех рядный, побольше, поменьше, с крупной секцией с мелкой, алюминиевый, медный. Вот именно из какого металла изготовлен радиатор и пойдет речь.

Одни считают, что медь. Это своеобразные староверы, так бы назвали их в XVII веке. Да, если взять не новые автомобили XX века, то тогда повсеместно устанавливались медные радиаторы.

Не зависимо от марки и модели, была ли это бюджетная микролитражка или тяжеловесный многотонный грузовик. Но есть и другая армия автовладельцев утверждая что радиаторы изготовленные из алюминия лучше медных.

Потому как их устанавливают на новые современные автомобили, на сверхмощные двигатели требующие качественного охлаждения.

  Выбор электромясорубки для дома

И что самое интересное они все правы. И у тех и у других есть свои плюсы и естественно минусы. А теперь небольшой урок физики. Самым отличным показателем, на мой взгляд, являются цифры, а именно коэффициент теплопроводности.

Если сказать по простому то это способность вещества передавать тепловую энергию от одного вещества другому. Т.е. у нас имеется ОЖ, радиатор из N-ного металла и окружающая среда.

Теоретически чем выше коэффициент тем быстрее радиатор будет забирать тепловую энергию у ОЖ и быстрее отдавать в окружающую среду.

Итак, теплопроводность меди составляет 401 Вт/(м*К), а алюминия — от 202 до 236 Вт/(м*К). Но это в идеальных условиях. Казалось бы медь выиграла в данном споре, да это «+1» за медные радиаторы. Теперь кроме всего необходимо рассмотреть собственно конструкцию самих радиаторов.

Теплопроводность меди и ее сплавов – плюсы и минусы

Медные трубки в основе радиатора, так же медные ленты воздушного радиатора для передачи полученного тепла в окружающую среду.

Крупные ячейки сот радиатора позволяют снизить потери скорости воздушного потока и позволяют прокачать большой объем воздуха за единицу времени.

Слишком малая концентрация ленточной части радиатора снижает эффективность теплопередачи и увеличивает концентрацию и силу локального нагрева радиатора.

Теплопроводность меди и ее сплавов – плюсы и минусы

Я нашел два вида радиаторов в основе которых лежат алюминиевые и стальные трубки. Вот еще не маловажная часть, т.к. коэффициент теплопроводности стали очень мал по сравнению с алюминием, всего лишь 47 Вт/(м*К). И собственно только из-за высокой разности показателей, уже не стоит устанавливать алюминиевые радиаторы со стальными трубками.

Хотя они прочнее чистокровных алюмишек и снижают риски протечки от высокого давления, например при заклинившем клапане в крышке расширительного бачка.

Высокая концентрация алюминиевых пластин на трубках увеличивает площадь радиатора обдуваемого воздухом тем самым увеличивая его эффективность, но при этом увеличивается сопротивление воздушного потока и снижается объем прокачиваемого воздуха.

Ценовая политика же на рынке сложилась таким образом что медные радиаторы значительно дороже алюминиевых. Из общей картины можно сделать вывод что и те и другие радиаторы по своему хороши. Какой же все таки выбрать? Этот вопрос остается за вами.

Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс.

Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции.

Теплопроводность металлов — один из параметров, определяющих их эксплуатационные возможности.

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача.

В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики.

Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

  Передаточное число главной пары

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве.

Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов.

Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Читайте также:  Лист алюминиевый рифленый (квинтет, чечевица и другие): гост, фото

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Коэффициент теплопроводности металлов при температура, °С

От чего зависит показатель теплопроводности

Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:

  • вида металла;
  • химического состава;
  • пористости;
  • размеров.

Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.

Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями.

Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину.

Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

  Дровокол от бензинового двигателя форум

Теплопроводность стали, меди, алюминия, никеля и их сплавов

Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.

Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град.

Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры.

Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.

Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.

Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град.

Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град.

А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.

Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий.

Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения.

Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия.

В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации.

Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

Источник: https://master-kleit.ru/origami/teploprovodnost-stal-med-aljuminij/

Медная кровля: плюсы и минусы материала

Медная крыша всё так же надежно защищает соборы, как и в первые дни после её установки. Что же мешает жителям городов пользоваться опытом предков и покрывать крыши домов медной кровлей? Надежная и долговечная, она оправдывает все затраты. Если дом пошел под снос, медь полностью уходит в переработку, так как является вечным материалом.

Недостатки медной кровли?

Теплопроводность меди и ее сплавов – плюсы и минусы

То, что считается преимуществом медной кровли, а именно изменение цвета со временем, часто записывают в недостатки материала. Действительно, когда янтарный цвет приобретает зеленоватый оттенок, это не всем по душе. Но знатоки считают медную крышу, покрытую патиной признаком изысканности и аристократизма.

Следующий недостаток отмечают все, вне зависимости от вкусовых предпочтений. Медная кровля, действительно, стоит дороже аналогов. Монтаж медной крыши трудоемкий процесс, который требует досконального знания дела, а значит требуется найти опытного мастера.

Многие отступают на этом этапе, забывая о длительности службы медной крыши. Медная кровля десятилетиями сохраняет первоначальные свойства. Крыша не требует ремонта (за исключением случаев механического повреждения).

В долгосрочной перспективе медная кровля экономически выгодная покупка.

Следующий минус – высокая теплопроводность материала. Это особенность ярко выражена в теплое время года. Медная крыша сильно нагревается на солнце, в итоге температура повышается внутри дома.

Но проблему едва ли заметит среднестатистический городской житель. Широко распространена установка кондиционеров. В сильную жару люди спасаются вентиляторами.

Поэтому теплопроводность меди уже давно не относится к недостаткам медной кровли.

Единственный недостаток кровли из меди, с которым сложно спорить, – её вес. Медь – это металл и весит он не мало. Поэтому следует убедиться в надежности несущих конструкций дома.

Достоинства медной кровли

Теплопроводность меди и ее сплавов – плюсы и минусы

Второе достоинство – пластичность и сочетаемость материала со всеми видами конструкций. Медь легко обрабатывается, укладывается в любую форму. Она прекрасно сочетается с деревом, камнем, кирпичом. Кровля из меди повышает статус здания. Визуально медь привлекает внимание, особенно с течением времени, когда первоначальный красноватый цвет приобретает зеленый оттенок. Через 2-3 десятилетия ваша крыша будет достопримечательностью окрестностей, так как мимо её изумрудного цвета будет невозможно пройти равнодушно.

Медь экологичный материал, без примесей. Она не наносит вред окружающей среде. При демонтаже полностью перерабатывается.

Медь не просто теплопроводный материал, она пожароустойчивая. Это гарантирует дополнительную безопасность, снижает риск возникновения пожара.

Медную кровлю монтируют из отдельных листов, что упрощает процесс ремонта, если таковой потребуется. Как правило, механические порождения крыши, покрытой медью, вынуждают сменить отдельные элементы не ранее, чем через 10-15 лет. Этот факт ещё раз свидетельствует об экономичности в случае выбора медной кровли.

Где купить медную кровлю?

УГМК-ОЦМ производит кровельную медь на заводе в г. Киров. современное оборудование позволяет выпускать ленты с ровной поверхностью без загрязнения, проколов и т.д. Минимальная партия заказа составляет 500 кг.

За меньшими объемами обращайтесь к нашим дилерам. Адреса и телефоны указаны во вкладке контактная информация – список дилеров.

В случае заказа партии от 500 кг, оставляйте заявку на сайте, и менеджер УГМК-ОЦМ свяжется с вами для оформления сделки.

Источник: http://www.ocm.ru/about/articles/2017/zio/mednaa-krovla-plusy-i-minusy-materiala

Теплопроводность сплавов меди. Температура плавления латуни и бронзы

Теплопроводность латуни и бронзы

В таблице приведены значения теплопроводности латуни, бронзы, а также медно-никелевых сплавов (константана, копели, манганина и др.) в зависимости от температуры — в интервале от 4 до 1273 К.

Теплопроводность латуни, бронзы и других сплавов на основе меди при нагревании увеличивается. По данным таблицы, наибольшей теплопроводностью из рассмотренных сплавов при комнатной температуре обладает латунь Л96. Ее теплопроводность при температуре 300 К (27°С) равна 244 Вт/(м·град).

Также к медным сплавам с высокой теплопроводностью можно отнести: латунь ЛС59-1, томпак Л96 и Л90, томпак оловянистый ЛТО90-1, томпак прокатный РТ-90. Кроме того, теплопроводность латуни в основном выше теплопроводности бронзы. Следует отметить, что к бронзам с высокой теплопроводностью относятся: фосфористая, хромистая и бериллиевая бронзы, а также бронза БрА5.

Медным сплавом с наименьшей теплопроводностью является марганцовистая бронза — ее коэффициент теплопроводности при температуре 27°С равен 9,6 Вт/(м·град).

Теплопроводность медных сплавов всегда ниже теплопроводности чистой меди при прочих равных условиях. Кроме того, теплопроводность медно-никелевых сплавов имеет особенно низкое значение. Самым теплопроводным из них при комнатной температуре является мельхиор МНЖМц 30-0,8-1 с теплопроводностью 30 Вт/(м·град). 

Таблица теплопроводности латуни, бронзы и медно-никелевых сплавов

Сплав
Температура, К
Теплопроводность, Вт/(м·град)
Медно-никелевые сплавы
Латунь
Бронза
Бериллиевая медь 300 111
Константан зарубежного производства 4…10…20…40…80…300 0,8…3,5…8,8…13…18…23
Константан МНМц40-1,5 273…473…573…673 21…26…31…37
Копель МНМц43-0,5 473…1273 25…58
Манганин зарубежного производства 4…10…40…80…150…300 0,5…2…7…13…16…22
Манганин МНМц 3-12 273…573 22…36
Мельхиор МНЖМц 30-0,8-1 300 30
Нейзильбер 300…400…500…600…700 23…31…39…45…49
Автоматная латунь UNS C36000 300 115
Л62 300…600…900 110…160…200
Л68 латунь деформированная 80…150…300…900 71…84…110…120
Л80 полутомпак 300…600…900 110…120…140
Л90 273…373…473…573…673…773…873 114…126…142…157…175…188…203
Л96 томпак волоченый 300…400…500…600…700…800 244…245…246…250…255…260
ЛАН59-3-2 латунь алюминиево-никелевая 300…600…900 84…120…150
ЛМЦ58-2 латунь марганцовистая 300…600…900 70…100…120
ЛО62-1 оловянистая 300 99
ЛО70-1 оловянистая 300…600 92…140
ЛС59-1 латунь отожженая 4…10…20…40…80…300 3,4…10…19…34…54…120
ЛС59-1В латунь свинцовистая 300…600…900 110…140…180
ЛТО90-1 томпак оловянистый 300…400…500…600…700…800…900 124…141…157…174…194…209…222
БрА5 300…400…500…600…700…800…900 105…114…124…133…141…148…153
БрА7 300…400…500…600…700…800…900 97…105…114…122…129…135…141
БрАЖМЦ10-3-1,5 300…600…800 59…77…84
БрАЖН10-4-4 300…400…500 75…87…97
БрАЖН11-6-6 300…400…500…600…700…800 64…71…77…82…87…94
БрБ2, отожженая при 573К 4…10…20…40…80 2,3…5…11…21…37
БрКд 293 340
БрКМЦ3-1 300…400…500…600…700 42…50…55…54…54
БрМЦ-5 300…400…500…600…700 94…103…112…122…127
БрМЦС8-20 300…400…500…600…700…800…900 32…37…43…46…49…51…53
БрО10 300…400…500 48…52…56
БрОС10-10 300…400…600…800 45…51…61…67
БрОС5-25 300…400…500…600…700…800…900 58…64…71…77…80…83…85
БрОФ10-1 300…400…500…600…700…800…900 34…38…43…46…49…51…52
БрОЦ10-2 300…400…500…600…700…800…900 55…56…63…68…72…75…77
БрОЦ4-3 300…400…500…600…700…800…900 84…93…101…108…114…120…124
БрОЦ6-6-3 300…400…500…600…700…800…900 64…71…77…82…87…91…93
БрОЦ8-4 300…400…500…600…700…800…900 68…77…83…88…93…96…100
Бронза алюминиевая 300 56
Бронза бериллиевая состаренная 20…80…150…300 18…65…110…170
Бронза марганцовистая 300 9,6
Бронза свинцовистая производственная 300 26
Бронза фосфористая 10% 300 50
Бронза фосфористая отожженая 20…80…150…300 6…20…77…190
Бронза хромистая UNS C18200 300 171
Читайте также:  Пескоструйная насадка для karcher: пескоструй из мойки высокого давления

Примечание: Температура в таблице дана в градусах Кельвина!

Температура плавления латуни

Температура плавления латуни рассмотренных марок изменяется в интервале от 865 до 1055 °С. Наиболее легкоплавкой является марганцовистая латунь ЛМц58-2 с температурой плавления 865°С. Также к легкоплавким латуням можно отнести: Л59, Л62, ЛАН59-3-2, ЛКС65-1,5-3 и другие.

Наибольшую температуру плавления имеет латунь Л96 (1055°С). Среди тугоплавких латуней по данным таблицы можно также выделить: латунь Л90, ЛА85-0,5, томпак оловянистый ЛТО90-1.

Температура плавления латуни

Латунь
t, °С
Латунь
t, °С
Л59 885 ЛМц55-3-1 930
Л62 898 ЛМц58-2 латунь марганцовистая 865
Л63 900 ЛМцА57-3-1 920
Л66 905 ЛМцЖ52-4-1 940
Л68 латунь деформированная 909 ЛМцОС58-2-2-2 900
Л70 915 ЛМцС58-2-2 900
Л75 980 ЛН56-3 890
Л80 полутомпак 965 ЛН65-5 960
Л85 990 ЛО59-1 885
Л90 1025 ЛО60-1 885
Л96 томпак волоченый 1055 ЛО62-1 оловянистая 885
ЛА67-2,5 995 ЛО65-1-2 920
ЛА77-2 930 ЛО70-1 оловянистая 890
ЛА85-0,5 1020 ЛО74-3 885
ЛАЖ60-1-1 904 ЛО90-1 995
ЛАЖМц66-6-3-2 899 ЛС59-1 900
ЛАН59-3-2 латунь алюминиево-никелевая 892 ЛС59-1В латунь свинцовистая 900
ЛАНКМц75-2-2,5-0,5-0,5 940 ЛС60-1 900
ЛЖМц59-1-1 885 ЛС63-3 885
ЛК80-3 900 ЛС64-2 910
ЛКС65-1,5-3 870 ЛС74-3 965
ЛКС80-3-3 900 ЛТО90-1 томпак оловянистый 1015

Температура плавления бронзы

Температура плавления бронзы находится в диапазоне от 854 до 1135°С. Наибольшей температурой плавления обладает бронза АЖН11-6-6 — она плавится при температуре 1408 К (1135°С). Температура плавления этой бронзы даже выше, чем температура плавления меди, которая составляет 1084,6°С.

К бронзам с невысокой температурой плавления можно отнести: БрОЦ8-4, БрБ2, БрМЦС8-20, БрСН60-2,5 и подобные.

Температура плавления бронзы

Бронза
t, °С
Бронза
t, °С
БрА5 1056 БрОС8-12 940
БрА7 1040 БрОСН10-2-3 1000
БрА10 1040 БрОФ10-1 934
БрАЖ9-4 1040 БрОФ4-0.25 1060
БрАЖМЦ10-3-1,5 1045 БрОЦ10-2 1015
БрАЖН10-4-4 1084 БрОЦ4-3 1045
БрАЖН11-6-6 1135 БрОЦ6-6-3 967
БрАЖС7-1,5-1,5 1020 БрОЦ8-4 854
БрАМЦ9-2 1060 БрОЦС3,5-6-5 980
БрБ2 864 БрОЦС4-4-17 920
БрБ2,5 930 БрОЦС4-4-2,5 887
БрКМЦ3-1 970 БрОЦС5-5-5 955
БрКН1-3 1050 БрОЦС8-4-3 1015
БрКС3-4 1020 БрОЦС3-12-5 1000
БрКЦ4-4 1000 БрОЦСН3-7-5-1 990
БрМГ0,3 1076 БрС30 975
БрМЦ5 1007 БрСН60-2,5 885
БрМЦС8-20 885 БрСУН7-2 950
БрО10 1020 БрХ0,5 1073
БрОС10-10 925 БрЦр0,4 965
БрОС10-5 980 Кадмиевая 1040
БрОС12-7 930 Серебряная 1082
БрОС5-25 899 Сплав ХОТ 1075

Примечание: температуру плавления и кипения других металлов можно найти в этой таблице.

Источники:

Источник: http://thermalinfo.ru/svojstva-materialov/metally-i-splavy/teploprovodnost-splavov-medi-temperatura-plavleniya-bronzy-i-latuni

Теплопроводность стали и других сплавов меди, латуни и алюминия, теплопередача

Теплопроводность алюминия выше теплопроводности железа более чем в 3 раза, что приводит к сильному теплоотводу и широкой зоне разогрева металла, прилегающего к шву.  

Теплопроводность алюминия в пять раз больше теплопроводности чугуна, и поэтому алюминиевые сплавы часто заменяют чугун при изготовлении поршней двигателей внутреннего сгорания. Кроме того, поршень из алюминиевого сплава, будучи легче чугунного примерно в три раза, облегчает вес конструкции. Металлы с большой теплопроводностью в то же время являются лучшими проводниками электричества.  

Схема аргонового хроматографа фирмы Пай.  

Большая теплоемкость и теплопроводность алюминия обеспечивают равномерную температуру по всей длине трубки.  

В виду того что теплопроводность алюминия почти в пять раз выше теплопроводности стали, время нагрева, а следовательно и время вулканизации резиновых смесей в прессформах из этого материала сокращается. Однако следует отметить, что пресс-формы из алюминия быстро изнашиваются, что является их существенным недостатком.  

Влияние легирующих добавок на коэффициент линейного теплового расширения алюминия в присутствии второго.  

Примеси оказывают существенное влияние на теплопроводность алюминия в области низких температур.  

Теплопроводность оксидной пленки намного хуже теплопроводности алюминия, но вследствие незначительной толщины пленки это не оказывает заметного влияния на общую теплопроводность изделия.  

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза меньше теплопроводности железа. С повышением температуры теплопроводность титана несколько понижается и при 700 С составляет 0 0309 кал / см сек СС.  

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза меньше теплопроводности железа. С повышением температуры теплопроводность титана несколько понижается и при 700 С составляет 0 0309 кал / см сек С.  

Поэтому, например, теплопроводность титана в 8 — 10 раз меньше теплопроводности алюминия.  

Коэффициент теплопроводности меди, серебра и стали изменяется с температурой незначительно, теплопроводность алюминия возрастает в интервале 0 — 400 С приблизительно в 1 6 раза.

При высоких температурах серебро испаряется интенсивнее меди, а медь окисляется и взаимодействует с парами теллуридов. Поэтому для медных шин целесообразно использовать защиту слоем железа.

Контакт шин с термоэлементами осуществляется через промежуточные слои, исключающие диффузию материала шины в термоэлектрический материал.  

Поэтому, например, теплопроводность титана в 8 — 10 раз меньше теплопроводности алюминия.  

Из сопоставления приведенных данных для алюминия с теплофизи-ческими характеристиками щелочных металлов следует, что температура кипения и теплопроводность алюминия значительно больше, а сечение захвата тепловых нейтронов значительно меньше соответствующих величин — для щелочных металлов.

Имея в виду, что остальные теплофи-зические характеристики сравниваемых металлов приближенно одинаковы, и учитывая также малую упругость паров алюминия при высоких температурах, можно сделать заключение, что с точки зрения теплофи-зических характеристик алюминий, как теплоноситель, имеет определенные преимущества по сравнению со щелочными металлами при решении задач, связанных с высокой температурой теплоносителя.  

Следует подчеркнуть, что так как собственно переходное электрическое сопротивление сварных точек ( RK) очень мало ( оно измеряется долями мком), а теплопроводность алюминия и меди велика, то никогда не происходит перегрева в месте сварки при прохождении тока даже и в тех случаях, когда суммарное сечение сварных точек значительно меньше рабочего сечения самой шины. Это тщательно проверено длительными лабораторными и эксплуатационными испытаниями.  

Характеристика теплопроводности материалов

Понятие теплопроводности материалов характеризуется способностью переносить тепловую энергию в пределах определенного объекта от нагретых частей к холодным. Процесс осуществляется атомами, молекулами, электронами и происходит в любых телах с неравномерным распределением температуры.

С позиций кинетической физики этот процесс происходит в результате взаимодействия частиц молекул более нагретых участков в пределах образца с другими элементами, отличающимися низшей температурой. Механизм и скорость переноса теплоты зависит от агрегатного состояния вещества.

https://youtube.com/watch?v=z8JhdvjYrl8

Категория теплопроводности предусматривает определение скорости нагревания образца материала и перемещение температурной волны в определенном направлении. Показатель зависит от физических параметров:

  • плотности;
  • температуры фазового перехода в жидкое состояние
  • скорости распространения звука (для диэлектриков).

Теплопроводность — алюминий

Прочность алюминиевой оболочки в несколько раз выше свинцовой, алюминий в 4 2 раза легче свинца ( удельный вес 2 7 и 11 4 соответственно), теплопроводность алюминия примерно в шесть раз выше, чем у свинца, его сопротивление усталости при вибрации в 25 раз больше, чем у свинца. В четырехпроводных сетях переменного тока напряжением до 1000 в с глухозаземленной нейтралью допускается использование алюминиевой оболочки в качестве нулевого рабочего провода.  

В этом уравнении di 15 5 — 10 — 3 ( м) — наружный диаметр графитового баллона; d0 1 1 45 — 10 — 3 ( м) — диаметр сечения испытуемого расплавленного металла; q ( z) ( ккал / м2 — час) — тепловой поток на наружной поверхности графитового баллона; К AI и гр ( ккал / м — час — град) — соответственно коэффициенты теплопроводности алюминия и графита.  

Из металлов лучше всего проводят тепло серебро и медь. Теплопроводность алюминия примерно в 2 5 раза, железа в в раз, свинца в 12 раз меньше, чем меди.  

Корродирующее действие некоторых компонентов флюса на алюминий нейтрализуются промывкой шва и поверхности деталей 10 % — ным раствором азотной кислоты в теплой воде и в последующем горячей водой.

Теплопроводность алюминия почти в 5 раз, а теплоемкость в 2 раза больше, чем стали, поэтому при сварке алюминия необходимо поддерживать более высокую температуру пламени, чем температура плавления алюминия.  

Диаграмма прочности алюминия при нагреве в процессе сварки.  

Теплопроводность алюминия в 3 раза больше, чем у стали, коэффициент расширения в 2 раза превышает коэффициент расширения стали.  

Кристаллическая решетка алюминия состоит, как и у многих других металлов, из гра-нецентрированных кубов ( см. стр. Теплопроводность алюминия вдвое больше теплопроводности железа и равна половине теплопроводности меди. Его электропроводность намного выше электропроводности железа и достигает 60 % электропроводности меди.  

Из металлов лучше всего проводят тепло серебро и медь. Теплопроводность алюминия примерно в 2 5 раза, железа в б раз, свинца в 12 раз меньше, ч м меди.  

С понижением чистоты алюминия теплопроводность уменьшается, а с повышением температуры несколько увеличивается. При 100 теплопроводность алюминия составляет — 66 5 % теплопроводности серебра.  

Если это количество теплоты известно, то для сечения z по замеренному значению градиента температур в нем можно рассчитать величину коэффициента теплопроводности образца. Окончательный расчет искомой величины коэффициента теплопроводности алюминия состоит в расчете поправки для коэффициента теплопроводности образца на теплоту, проходящую по стенкам графитового баллона.  

Некоторые свойства титана, циркония и гафния.  

Атомная структура титана, его большое сродство к электрону оказывают сильное влияние на такие свойства, как электропровод ность и теплопроводность. Теплопроводность его в 8 — 10 раз меньше теплопроводности алюминия. Это имеет существенное значение, например, при обработке металла резанием.  

Модуль упругости титана почти вдвое меньше модуля упругости железа, находится на одном уровне с модулем медных сплавов и значительно выше, чем у алюминия.

Теплопроводность титана низкая: она составляет около 7 % от теплопроводности алюминия и 16 5 % от теплопроводности железа. Это необходима учитывать при нагреве металла для обработки давлением и при сварке.

Электросопротивление титана примерно в 6 раз больше чем у железа и в 20 раз больше, чем у алюминия.  

Модуль упругости титана почти вдвое меньше модуля упругости железа, находится на одном уровне с модулем медных сплавов и значительно выше, чем у алюминия.

Теплопроводность, титана низкая: она составляет около 7 % от теплопроводности алюминия и 16 5 % от теплопроводности железа.  

Стеклопласты на основе фенольных смол имеют теплопроводность такого же порядка. Для сравнения следует заметить, что теплопроводность стали равна, 40, а теплопроводность алюминия находится в пределах от 175 до 200 ккал / м-ч-град.  

Источник: https://vse-otoplenie.ru/teplootdaca-aluminia

Ссылка на основную публикацию
Adblock
detector