Производство стали – технология, оборудование, этапы

Без всякого сомнения, можно говорить о том, что сталь – это один из самых востребованных и важных конструкционных материалов. Он используется при конструировании транспорта, авиации, в строительстве и так далее.

Стоит заметить, что сегодня производство стали развито очень хорошо. Эта отрасль металлургии считается одной из самых сложных и трудоемких.

Давайте более подробно поговорим на данную тему и разберемся со всеми интересными нюансами и деталями.

Производство стали – технология, оборудование, этапы

О мировой сталелитейной промышленности

В 2014 году произошло некое восстановление металлургической промышленности, в частности сталелитейной, после кризиса 2012 года. Статистика показывает, что мировая выплавка ежегодно растет. К примеру, с 2001 по 2012 год объемы увеличились почти на 700 миллионов тонн. Тем не менее, цикличность производства делает сталелитейную промышленность относительно нестабильной отраслью.

Сегодня же можно говорить о том, что ежегодный спрос на данный материал будет постоянно увеличиваться. Страны с развитой инфраструктурой будут выступать в качестве главных покупателей. Обусловлено это необходимостью урбанизации и индустриализации. Из этого можно сделать простой вывод – производство стали никуда не денется, и будет только развиваться.

Кременчугский сталелитейный завод

Данное украинское предприятие известно практически во всем мире. По большей части тут отливаются детали для грузовых вагонов, в частности колеса. Помимо этого завод изготавливает литые детали для автомобильной промышленности и собственных ремонтных нужд.

На этом заводе работает примерно 2 500 специалистов по состоянию на 2014 год. Но ввиду экономического кризиса на Украине и ухудшения отношений с Россией завод почти полностью остановился. Обусловлено это тем, что примерно 95% изготавливаемой продукции покупала РФ.

В результате все чаще говорят о консервации завода, а после этого его могут просто разобрать.

Производство стали – технология, оборудование, этапыПервые видимые ухудшения начались еще в 2009 году, когда компания потеряла большую часть своих активов. Уже в 2010 году завод стал банкротом, но свою работу не прекратил. Тем не менее, к 2013 году объемы производства сократились на 48%, что фактически означало остановку предприятия, это и случилось немного позже. Сейчас сложно сказать будет ли работать Кременчугский сталелитейный завод или нет.

Кислородно-конвертерный процесс

В настоящее время существует несколько способов получения стали. Один из них, он же основной – кислородно-конвертерный. Этот метод появился несколько позже бессемеровского. По сути, можно говорить о том, что процесс получения стали в конвертере точно такой же, но несколько усовершенствованный. Давайте немного разберемся с тем, как все работает.

В конвертер заливается жидкий чугун, который снизу продувается кислородом. В процессе происходит окисление примесей чугуна из-за чего и происходит его превращение в сталь.

Причем, технология производства стали такова, что во время окисления вырабатывается тепло, которого достаточно для обеспечения необходимой температуры в камере.

Как вы видите, это довольно простой метод, позволяющий получить качественный продукт за небольшое время. Температура в камере обычно поддерживается в диапазоне 1 600 градусов.

Производство стали – технология, оборудование, этапы

Мартеновский процесс

Это еще один популярный метод получения качественной стали. Суть заключается в том, что плавка осуществляется на поду в отражательной печи. Предварительно ее оснащают регенераторами, которые необходимы для подогрева воздуха или газа.

Можно сказать, что сама идея такой плавки появилась достаточно давно, однако мартеновский процесс производства стали требует высокой температуры, чего добиться никак не удавалось.

Но уже в 1864 году впервые использовали регенераторы, которые показали себя с лучшей стороны.

Чтобы получить сталь, в мартеновскую печь загружают шихту. В ее состав входит скрап, лом и чугун. В результате воздействия высокой температуры через некоторое время происходит плавка шихты, а дальше подаются специальные добавки.

Они нужны для того, чтобы придать стали необходимые эксплуатационные свойства. Готовый продукт отливается в ковши и транспортируется к пункту назначения.

Так как мартеновский метод довольно эффективный и не требует больших затрат, поэтому очень скоро стал основным чуть ли не во всем мире.

Производство стали – технология, оборудование, этапы

Про электросталеплавильное производство

Сегодня практически любой сталелитейный завод имеет в своем составе дуговые сталеплавильные печи. Помимо этого имеют место и печи постоянного и переменного тока, однако они используются редко и объемы выплавки с них невелики. Но вот электродуговые печи пользуются большой популярностью.

Обусловлено это тем, что в них можно получить сталь электропечного сортамента. Тут довольно просто получить высоколегированные и легированные стали. В это же время добиться таких же хороших результатов в мартеновских печах и конвертерах не удается.

Обусловлено это тем, что в дуговой печи осуществляется быстрый нагрев, что позволяет добавить большое количество легирующих элементов. Наряду с этим защита металла от угара дает хороший результат. В принципе, тут имеется возможность не только плавной регулировки температуры, но и точной, что тоже немаловажно.

Ввиду того, что этот метод только развивается, можно говорить о его перспективности.

Производство стали в России

С российской металлургией знакомы во всем мире, так как она является довольно мощной и конкурентоспособной. Не исключением является такая отрасль, как сталелитейное производство.

В настоящее время РФ занимает 5 место в мире по количеству производимой стали.

Несмотря на то, что внутренние интересы в металле довольно высоки, по состоянию на 2012 год было экспортировано порядка 40% от общего количества продукции.

Производство стали – технология, оборудование, этапыПо статистике, за последние 10 лет наблюдается положительная динамика развития сталелитейной промышленности России. По сравнению с 1999 годом, в 2009 году производительность была увеличена примерно на 64%, что довольно существенно. В это же время многие лидирующие российские заводы не отстают от зарубежных конкурентов и догоняют их в плане производительности. В 2009-м году в России примерно 57% стали изготавливалось в кислородных конвертерах, 27% — в электродуговых печах и всего 16% — в мартеновских печах. В целом Российская Федерация ежегодно изготавливает порядка 4,5% от мирового производства. Но по статистике, эта цифра постепенно ползет вверх, что говорит о положительной динамике.

О ситуации в мире в 2014 году

Как было отмечено выше, после мирового кризиса в 2012 году сталелитейная промышленность оправилась только спустя несколько лет. Так, за это время всемирный спрос на данный металл увеличился на 3,3%.

Многие эксперты отмечают, что случилось это потому, что в странах с развитой экономикой постоянно растет спрос на сталь. Наиболее интенсивно рост производства стали проходит в Китае. Там с 2013 года до 2015 было изготовлено больше на 3,5%.

Нельзя не отметить и рост в Индии, где было произведено стали больше на 5,6%. В США же рост увеличения объемов производства основывается на увеличении спроса автомобильной промышленности. Планируется изготовить на 3% больше стали по сравнению с предыдущими годами.

В Европе в 2012 и 2013 году была отрицательная тенденция, то есть потребление не увеличивалось, а уменьшалось. Но уже в 2014 году потребление выросло на 2,1%. Результат хоть и незначительный, но приятный.

Производство стали – технология, оборудование, этапыО ценах и еще кое-что

Как было отмечено немного выше, металлургическая промышленность цикличная. Это говорит о том, что цены на металл постоянно изменяются: то они растут, то падают. Тем не менее, по сравнению с 2012 годом был замечен неплохой рост. Однако нужно понимать, что тут все зависит от стоимости исходного сырья.

Чем дороже будет обходиться кокс, шихта, лом и другие продукты, тем дороже будет сталь. Нельзя и не обращать внимания на такой фактор, как перенасыщение рынка дешевой китайской продукцией. Это способно существенно снизить цены.

Еще один интересный момент заключается в том, что многие потребители пытаются заменить сталь другими материалами. Вместо стальных лопат используют пластиковые, металлические детали заменяют полимерными.

К примеру, кузов электрокара изготавливается уже не из стали, а из специального волокна, которое по заявлению производителя имеет отличные прочностные и эксплуатационные характеристики и значительно меньший вес.

Производство стали – технология, оборудование, этапыЗаключение

Как вы видите, на сегодняшний день есть несколько актуальных способов получения стали. Это конвертерный метод, мартеновский и плавка в дуговых печах. Каждый из них чем-то хорош и имеет свои недостатки. Тем не менее, производство стали в мире таково, что приходится пользоваться даже не самыми выгодными, с экономической точки зрения, способами.

Одно можно сказать точно, цены на сталь будут постепенно расти, а объемы увеличиваться. Но это будет происходить до определенного момента. В любом случае, через некоторое время появятся лучшие материалы, которые будут иметь меньший вес, лучшее сопротивление коррозии и т.п. Сегодня они если и есть, то невыгодно выглядят на фоне металлических изделий из-за своей высокой стоимости.

В принципе, на этом все.

Источник: https://www.syl.ru/article/170615/new_proizvodstvo-stali-staleliteynaya-promyishlennost

Технологическая схема производства высококачественной стали

В начале ХХ в. химический состав и прочность стали практически исчерпывали требования к ее качеству.

Сегодня изменились не только эти нормы, в стандартах на сталь отражены многообразные требования технологии производства и эксплуатации машин и сооружений: штампуемость, обрабатываемость резанием, свариваемость, прокаливаемость, хладостойкость, коррозионная стойкость, стойкость к старению и многие другие.

Качество стали — характеристика многомерная, хорошо описываемая матрицей свойств, составов и т.д. Металл может оказаться непригодным даже когда не выполнено хотя бы одно из условий работоспособности.

А выполнимость почти каждой из норм сегодня зависит не от одного агрегата или режима, а от всей технологической цепочки.

Поэтому не только уровень, но и полный перечень обязательных материаловедческих и технологических норм для продукции — предмет обстоятельного анализа перед разработкой любых металлических изделий.

В этой связи современная технология производства высококачественной стали должна обеспечивать строгое соответствие технологических параметров заданным значениям. Для достижения этого в технологических указаниях должны быть оговорены каждый из этапов сталеплавильного передела: от подбора шихты, до сдачи слитка.

Ниже кратко рассмотрена общепринятая сегодня концепция технологии производства стали для ответственных изделий машиностроения. Технология должна быть основана на постоянном экспрессном контроле технологических параметров и направлена на получение заданного стандартного состояния металла перед разливкой, определяемого требованиями к свойствам готовой металлопродукции.

Технологическая цепочка при этом должна обязательно включать следующие этапы:

  • подготовка шихтовых материалов с целью обеспечения заданного содержания цветных и других неудаляемых примесей в конечном металле и снижения расхода электроэнергии (за счет подбора размеров компонентов шихты).
Производство стали – технология, оборудование, этапы
  • получение полупродукта с заданным содержанием примесных и легирующих элементов, заданным содержанием углерода, активностью кислорода и, конечно, с заданной температурой;
Производство стали – технология, оборудование, этапы Производство стали – технология, оборудование, этапы
    • отсечку печного шлака при выпуске или на специальном стенде с целью предотвращения ресульфурации, рефосфорации и вторичного окисления;
    • наведение нового высокоосновного шлака;
    • максимально раннее после выпуска глубокое  (аО  < 10 ppm) раскисление металла;
    • вакуумирование, причем если требуется глубокая десульфурация ([S] < 0,002 %) более предпочтительно ковшевое вакуумирование, где имеет место наиболее интенсивное и полное перемешивание металла со шлаком;
  • если требуется достаточно продолжительная внепечная обработка необходимо устройство для нагрева металла;
  • обработку металла кальцийсодержащими материалами с помощью трайб-технологии;
  • разливку металла из стандартного состояния (описываемого такими параметрами, как температура, окисленность и содержание водорода и азота) с обязательной защитой от вторичного окисления.
Производство стали – технология, оборудование, этапы
  • Детальные корректировки технологии определяются индивидуальными условиями предприятия. В любом случае, разработка комплексной технологии производства высококачественных марок стали для конкретного предприятия предполагает:

    • проведение комплексного технико-экономического анализа проекта;
    • выполнение проектно-конструкторских работ;
    • обоснование и разработка оптимальных технологических решений и маршрутов;
    • поставка необходимого набора оборудования;

    освоение оборудования, технологии и обеспечение ее устойчивой длительной эксплуатации (гарантийное и послегарантийное обслуживание);

  • мировой уровень качества и конкурентоспособность выпускаемой продукции.

Ниже рассмотрены четыре основных этапа металлургического передела: подготовка шихты, выплавка, внепечная обработка и разливка. Рассмотренная схема относится к машиностроительным заводом, на которых плавление осуществляют в дуговых печах, а сталь разливаю в слитки.

Основным сырьем для выплавки стали в электродуговых печах, в отличие от конвертеров, является твердая металлошихта, состоящая преимущественно из металлоотходов собственных металлургических производств и поступающего со стороны товарного лома. К регламентируемым показателям качества металлошихты во всем мире относят, прежде всего, такие факторы, как определенность химического состава, насыпная плотность и габаритные размеры отдельных составляющих шихты.

Требования к химическому составу металлической части шихты предъявляют, исходя из заданного содержания в готовом металле не удаляемых в ходе металлургического передела элементов.

Так, если низкое содержание серы и фосфора, а также газов может быть достигнуто за счет оптимизации режима выплавки и рафинирования в открытых плавильных агрегатах и технологии внепечной обработки в ковше, то удаление мышьяка и примесей цветных металлов при выплавке стали в открытых агрегатах практически невозможно, а её рафинирование в процессе вакуумной плавки не позволяет получить качественную сталь в достаточном количестве и значительно увеличивает стоимость готовых изделий. Проблема рафинирования стали от примесей цветных металлов усугубляется тем, что в стальном ломе в процессе его оборота эти примеси постоянно накапливаются. Между тем примеси цветных металлов образуют в процессе кристаллизации легкоплавкие эвтектики по границам дендритов, что ослабляет междендритные границы, как первичные структуры первичного металла, это, в конечном счёте, влияет на поверхностные дефекты. Кроме того, примеси цветных металлов ухудшают обрабатываемость стали давлением в горячем состоянии, ухудшают свариваемость и т.д. По этим причинам к материалам для ответственных изделий предъявляют жесткие требования по содержанию цветных примесей.

Определенные требования предъявляют и к фракционному составу металлошихты.

Наличие такого рода требований обусловлено тем, что шихта высокой насыпной плотности, имеющая стабильный оптимальный размер кусков, позволяет ограничиться лишь одной подвалкой, исключив тем самым необходимость второй подвалки с соответствующим отключением печи, отводом свода с электродами и т.д. Это, в свою очередь, позволяет существенно форсировать плавку.

Кроме того, от фракционного состава используемой металлошихты зависят технико-экономические показатели работы плавильного агрегата, в том числе угар металла, определяющий выход жидкого (годного) металла.

Важным фактором, влияющим на угар металлошихты в сталеплавильном процессе, является величина ее активной поверхности, которая определяет степень взаимодействия шихты с кислородом. Активная поверхность зависит в основном от ее толщины (диаметра), которая может быть оценена насыпной массой.

В технико-экономических показателях сталеплавильных процессов величина угара лома является важной статьей, определяющей производительность агрегата и себестоимость стали. При использовании на плавку различных видов шихты (прежде всего различных видов лома) угар металла значительно изменяется.

Мировой опыт работы современных ДСП показывает, что выход жидкого металла составляет от 91 до 92  % от общей массы металлозавалки. При этом угар составляет от 4 до 6  %, в том числе в пыль отходящих газов уходит от 1,5 до 3,0  % и в виде оксидов со шлаком от 2,5 до 3,0  %. Со скрапом в шлаковые отвалы уходит от 2 до 3  %.

  • Анализ мирового опыта производства показывает, что устойчивой тенденцией развития сталеплавильного производства  всех машиностроительных заводов, в том числе производящим ротора ЦНД, является строительство новых и реконструкция существующих электросталеплавильных комплексов в виде высокопроизводительных компактных производств, в которых сталь выплавляют в сверхмощных электродуговых печах, работающих по одношлаковой технологии, в комплексе с агрегатами «ковш-печь».
  • Садка таких печей составляет от 100 до 120 т. Техническая характеристика основных наиболее распространенных в мире типов мощных ДСП приведена таблице ниже
  • Таблица 1 — Основные параметры ДСП  средней и большой емкости
Наименование параметра ДСП-30 ДСП-60 ДСП-80 ДСП-100 ДСП-125 ДСП-150
Номинальная масса плавки, т 30 60 80 100 125 150
Мощность печного трансформатора, МВА 26 40 60 95 110 120
Расчетное время цикла выпуск/выпуск, мин 58 58 55 55 55 55
Диаметр графитированного электрода, мм 400 500 550 610 610 610
Тип выпуска донный (эркерный) выпуск с отсечкой шлака
Напряжение высокой стороны трансформатора, кВ 35 35 35 35 35 35

На всех машиностроительных предприятиях в конструкциях электропечей средней и большой емкости стремятся реализовать современные технические решения, обеспечивающие эксплуатационные преимущества, направленные на сокращение периода плавки, удельного расхода электроэнергии, уменьшение длительности ремонтов, повышение надежности работы исполнительных механизмов, снижение эксплуатационных расходов, повышение безопасности, удобства эксплуатации и пр. В связи с этим современные электропечи, используемые в том числе на мировых машиностроительных заводах, имеют современные конструкции ванны с разъемным кожухом, донным (эркерным) выпуском металла с гарантированной отсечкой шлака, новые опорно-поворотные системы подъема-поворота свода, улучшенные конструкции водоохлаждаемых элементов, систем теплоконтроля, современные системы регулирования мощности, гидроприводов, водо- и газоснабжения, современные системы вторичного токоподвода в которых используются токоведущие рукава электрододержателей, а расчетная несимметрия фаз токоподвода составляет не превышает 2  %, печные трансформаторы с высокой удельной мощностью  и повышенным для такого типоразмера печей вторичным напряжением, комплекты оборудования средств интенсификации плавки с использованием дополнительных источников тепла и системами вспенивания шлака, а также многое другое.

Электропечи оснащают современными системами автоматизированного управления технологическим процессом АСУ ТП, решающими следующие задачи:

  • контроль параметров и управление электрическим режимом плавки с учётом технологических факторов и реактора электропечи;
  • контроль параметров и управление весодозирующим комплексом;
  • контроль параметров и управление системами подачи альтернативных источников тепла и вспенивания шлака;
  • контроль состояния и управление механизмами печи, трансформатора и переключателя ступеней напряжения;
  • расчёт количества и управление подачей в печь кислорода для продувки металла и твёрдых окислителей;
  • контроль параметров водоохлаждаемых элементов печи;
  • контроль параметров и управление системой удаления и очистки газов;
  • вывод данных на монитор оператора, визуализация процесса плавки, передача и получение данных по системе ввода/вывода и пр.

Также анализ мировых технологий производства стали на машиностроительных предприятиях показал, что общепринятым является внедрение в электросталеплавильном производстве технологий, позволяющих значительно снизить затраты за счет экономии энергии при нагреве лома теплом отходящих газов. Прежде всего это установки с горизонтальной (фирма «Consteel») или вертикальной (фирма «Fuchs») схемой подачи шихты навстречу потоку отходящих газов.

Система «Consteel» в настоящее время эксплуатируется или находится в состоянии пуска в 16 сталеплавильных цехах: «Ameristeel» (Чарлотт, США), «Nucor» (Дарлингтон, США), «Kyoei» (Нагоя, Япония), «CoSteel» (Сейеревилл, США), NSM (Бовин, Таиланд).

«ORI Martin» (Брешиа, Италия), «Xining» (Китай), «Guiang» (Китай), «Ameristeel» (Ноксвилл, США), «Nucor» (Хертфорд, США), «Shaoguan» (Китай), «Wuhi» (Китай), «Shiheng» (Китай), «Echeng» (Китай), «Tonghua» (Китай) и «Wheeling Pittsburg» (США).

На стадии проектирования и строительства находятся еще три новых цеха: «Hengly» (Китай), «Jiaxing» (Китай) и «Sonasid» (Марокко).

Источник: http://steelcast.ru/schem

Основы технологии получения стали

Первой ступенью получения стали является выплавка из руды чугуна. Последовательность технологических процессов получения чугуна и стали и изготовления из них строительных конструкций показана на рис. 1.

Выплавка чугуна из руды производится в доменных печах. Материалами, участвующими в этом процессе, являются железные руды, флюсы (плавни) и топливо.

Железные руды представляют собой окислы железа, т. е. различные соединения железа с кислородом. Обычно в составе руды имеются также и другие, не содержащие окислов железа, минералы, которые в металлургии называются «пустой породой».

Задачей доменного процесса является восстановление железа, т. е. удаление кислорода из окислов железа.

Одновременно с восстановлением железа удаляются пустые породы. Так как эти породы тугоплавки, к ним добавляют флюсы, т. е. вещества, образующие с ними легкоплавкие соединения.

Пустыми породами в большинстве случаев является кремнезем (SiO2) и глинозем (Аl2О3). В качестве флюса обычно добавляют известняк (СаСО3).

Сплавы флюсов с пустыми породами, являющимися отходами доменного процесса, называются доменными шлаками. Их удаляют из доменной печи в расплавленном состоянии.

В доменных печах в качестве топлива применяют в большинстве случаев каменноугольный кокс — продукт сухой перегонки коксующихся сортов каменного угля. Благодаря этому топливу достигается температура, необходимая не только для восстановления железа, но и для получения расплавленного чугуна и шлака.

Чугуны, получаемые при доменной плавке, подразделяются на литейные, применяемые для отливки труб, радиаторов и других изделий; передельные, идущие для производства стали, и специальные.

Основной задачей при переделке чугуна на сталь является понижение содержания примесей (С, Mn, Si, Р, S). Это достигается переводом примесей в соединения, не растворяющиеся в расплавленном металле, переходящие в шлак и удаляемые вместе с ним.

Необходимо иметь в виду, что при высоких температурах плавления металла требуется специальная футеровка (облицовка) изнутри металлического кожуха печи, иначе он начнет плавиться или даст значительные изменения формы.

Материал футеровки, будучи огнеупорным, тем не менее в некоторой степени участвует в происходящих во время плавки реакциях образования шлака, поэтому его состав имеет большое значение.

Для футеровки металлургических печей применяют следующие материалы: шамотный кирпич и шамотные изделия (шамотом называют предварительно обожженную огнеупорную глину); дннасовый кирпич и изделия, получаемые путем обжига измельченных кварцевых пород с известковой связкой; магнезитовый кирпич и порошок из обожженного магнезита; доломитовый кирпич и порошок из обожженного доломита.

Производство стали – технология, оборудование, этапы

В каждом из способов выплавки стали, приведенных на рис. 1. задача удаления примесей решается различно.

Производство стали – технология, оборудование, этапы

При конвертерном способе применяют специальную печь грушевидной формы, вращающуюся на горизонтальной оси (рис. 2). В настоящее время по этому способу выплавляют в среднем 10% стали.

После того как в конвертер залит жидкий чугун (с частичным заполнением объема), сквозь него через отверстия в днище продувают под давлением воздух. Окисляя железо, кислород воздуха образует соединение FeO, называемое закисью железа, растворимое в жидком металле, реагирующее на примеси и переходящее в сталь. Переход примесей в шлак уменьшает их содержание в выплавляемом металле.

Недостаток конвертерного способа — повышение содержания в стали азота, получающееся вследствие продувания воздуха. Кроме того, конвертерный способ не позволяет перерабатывать большое количество стального лома.

Производство стали – технология, оборудование, этапы

По мартеновскому способу плавка стали ведется на поду пламенной отражательной печи (рис. 3), верхняя часть рабочего пространства которой ограничена сводом, отражающим тепловой поток. Для получения необходимой температуры в рабочем пространстве печи сжигается в смеси с воздухом горючее (в большинстве случаев газ).

Мартеновский способ является универсальным, позволяющим получать стали разного качества с добавкой при выплавке их чугунного и стального лома (так называемого скрапа) и даже железных руд.

Производство стали – технология, оборудование, этапы

Электроплавка, производящаяся в дуговой печи (рис. 4), является современным и наиболее совершенным способом выплавки стали.

Достоинства такой печи состоят в том, что в ней достигаются очень высокие температуры, которые легко регулировать, а следовательно, и регулировать весь процесс. Доступ воздуха в печь ограничен.

Сталь получается лучшего качества, чем при других процессах, вследствие отсутствия печных окисляющих газов и соприкосновения металла с топливом.

Высокая температура при электроплавке создается электрической дугой между угольными  электродами и расплавленным металлом. Напряжение тока, требующееся при плавке, не превышает 150 в при силе тока, доходящей до 10 тыс. а. По размерам применения электроплавки и ее удельному весу в металлургической промышленности Советский Союз занимает первое место в мире.

В результате плавки и разливки металла по формам получаются стальные слитки. Дальнейшим этапом является горячая механическая их обработка для получения изделии определенного сечения и длины, а в некоторых случаях и для улучшения механических свойств стали.

После плавки и разливки полученный металл может иметь различные дефекты (пороки).

К ним относятся: усадочные раковины, которые могут распространяться в глубь слитка; неравномерное выделение (скопление) примесей (фосфор, углерод и сера) при затвердевании (обычно примеси скапливаются у стенок усадочных раковин); газовые пузыри, образующиеся вследствие того, что газы, появляющиеся в процессе раскисления стали, не успевают выделяться при ее затвердевании; плены, появляющиеся на поверхности металла от брызг или заливин при разливке в формы; неметаллические включения, представляющие собой, как правило, частицы шлаков; трещины от быстрого и неравномерного охлаждения металла и больших внутренних напряжений, возникающих в результате резких изменений температуры.

Основными видами горячей механической обработки стали являются прокатка и ковка. Поскольку арматурная сталь изготовляется прокаткой, в дальнейшем изложении ковка не освещается.

При прокатке нагретый слиток пропускают между вращающимися валками прокатного стана. В зависимости от формы рабочей поверхности валков могут быть получены изделия различных профилей.

При горячей механической обработке структура металла может изменяться, причем могут образовываться различные дефекты.

Например, если обработка производится при высоких температурах, сталь делается крупнозернистой и хрупкой. Усадочные пустоты и газовые пузыри сплющиваются и ведут к образованию внутренних трещин.

При прокатке на неравномерных скоростях и слишком больших обжимах также могут появиться трещины и расслоения.

Для обнаружения дефектов необходимо производить наружный осмотр изделий, а также исследование так называемого шлифа металла. Исследование производится с помощью микроскопа и с применением различных химических добавок, которые могут растворять или окрашивать отдельные частицы металла.

Источник: http://www.stroitelstvo-new.ru/armatura_raboti/metall_2.shtml

Производство стали

Сталь – это железоуглеродистый сплав, который содержит около 1,5% углерода, если его содержание увеличивается, то значительно повышается хрупкость и твердость стали. Основной исходный материал для производства стали — стальной лом и передельный чугун.

Содержание примесей и углерода в стали намного ниже, чем в чугуне. Поэтому суть металлургического передела в сталь чугуна – это уменьшение содержания примесей и углерода за счет их избирательного окисления и превращения в газы и шлак в процессе плавки.

В первую очередь окисляется железо при взаимодействии кислорода и чугуна в сталеплавильных печах. Вместе с железом окисляются фосфор, кремний, углерод и марганец.

Оксид железа, который образуется при высоком температурном режиме, отдает свой кислород в чугуне более активным примесям, при этом окисляя их. Производство стали осуществляется в три стадии.

Первая стадия производства стали — расплавление породы

Происходит расплавление шихты и нагревается ванна жидкого металла. Температура металла невысокая, энергично окисляется железо, образуется оксид железа и окисляются примеси: марганец, кремний и фосфор. Производство стали – технология, оборудование, этапы

Самая важная задача этой стадии производства стали – это удаление фосфора. Для этого нужно проводить плавку в основной печи, где шлак будет содержать оксид кальция (CaO). Фосфорный ангидрид — P2O5 будет образовывать с оксидом железа непрочное соединение (FeO)3 x P2O5. Оксид кальция – как более сильное основание, по сравнению с оксидом железа, и при не очень высоких температурах связывает P2O5 и превращает его в шлак.

Для того чтобы удалить фосфор, нужна не очень высокая температура, ванны шлака и металла, достаточное содержание в шлаке FeO. Для того чтобы увеличить в шлаке содержание FeO и ускорить окисление примесей добавляется в печь окалина и железная руда, наводя железистый шлак. Постепенно, по мере удаления из металла в шлак фосфора, содержание в шлаке фосфора повышается. Так что нужно убрать данный шлак с зеркала металла, а затем заменить его новым со свежими добавками оксида кальция. Происходит кипение металлической ванны. Начинается постепенно, по мере нагрева до высоких температур. При увеличении температуры интенсивней происходит реакция окисления углерода, протекающая с поглощением теплоты: Для того чтобы окислить углерод вводят в металл небольшое количество окалины, руды или вдувают кислород. При реакции углерода с оксидом железа, пузырьки оксида углерода выводятся из жидкого металла, и происходит «кипение ванны». Во время «кипения» сокращается в металле содержание углерода до требуемого количества, температура выравнивается по объему ванны, немного удаляются неметаллические включения, которые прилипают к всплывающим пузырькам CO и газы, которые проникают в пузырьки CO. Все это ведет к увеличению качества металла. А значит, данная стадия — основная в процессе производства стали. Создаются условия для того чтобы удалить серу. В стали сера находится в форме сульфида — FeS, растворяемого в основном шлаке. Чем будет выше температурный режим, тем больше сульфида железа растворится в шлаке и будет взаимодействовать с оксидом кальция CaO: Соединение, которое образуется – CaS, растворяется в шлаке, но при этом не растворяется в железе, так что сера выводится в шлак. Происходит восстановление оксида железа, который растворен в жидком металле. Увеличение содержания кислорода в металле при плавке необходимо для осуществления окисления примесей, но в уже готовой стали кислород является вредной примесью, потому что понижает механические свойства стали. Раскисление сталь осуществляется двумя методами: диффузионным и осаждающим. Диффузионное раскисление происходит благодаря раскислению шлака. В измельчённом виде ферросилиций, ферромарганец и алюминий переносят на поверхность шлака. Эти раскислители, восстанавливают оксид железа, и при этом сокращают содержание его в шлаке. А значит, оксид железа, который растворен в стали переходит в этот шлак. Оксиды, которые образуются при таком процессе, остаются в шлаке, а железо, уже в восстановленном виде, переходит в сталь, а в ней уменьшается содержание неметаллических включений и увеличивается ее качество. Осаждающее раскисление происходит благодаря введению в жидкую сталь растворимых раскислителей (ферросилиция, ферромарганца, алюминия), которые содержат элементы, обладающие более высоким сродством к кислороду, в сравнении с железом. В конце концов, после раскисления восстанавливается железо и создаются оксиды: SiO2, MnO, Al2O5, имеющие меньшую плотность,в сравнении со сталью, и выводятся в шлак. Производство стали – технология, оборудование, этапы В зависимости от уровня раскисления можно выплавлять такие виды стали: — кипящие – не полностью раскислены в печи. Раскисление такой стали продолжается в изложнице при затвердевании слитка, за счет взаимодействия углерода и оксида железа: FeO + C = Fe + CO. Оксид углерода, который образовался, выводится из стали, обеспечивая удалению водорода и азота из стали, газы выводятся в виде пузырьков, приводя её к кипению. Кипящая сталь не имеет неметаллических включений, поэтому отличается высокой степенью пластичности.

  • спокойные — получается при абсолютном раскислении в ковше и в печи.
  • полуспокойные – отличаются промежуточной раскисленностью между кипящей и спокойной сталями. Частично раскисляется в ковше и в печи, а частично – в изложнице, за счет взаимодействия углерода и оксида желез, которые содержатся в стали.

Легирование стали происходит введением чистых металлов или ферросплавов в определенном количестве в расплав. Легирующие элементы, которые имеют меньше сродство к кислороду, чем у железа (Co, Ni, Cu, Mo), при разливке и плавке не окисляются, и поэтому их вводят в какое-либо время плавки. Легирующие элементы, которые имеют большее сродство к кислороду, чем у железа (Mn, Si, Cr, Al, Ti , V), в металл вводят после раскисления или вместе с ним на окончательном этапе плавки, а иногда и в ковш. Для производства стали на сталелитейных заводах должно быть специальное оборудование:

Кислородные конверторы

  • аргоновое хозяйство;
  • детали конвертеров (сосуды и несущие кольца конвертера);
  • фильтрация пыли;
  • отсасывание конвертерного газа;

Электропечи

  • индукционные печи (изготовление периферий);
  • дуговые печи (изготовление энергетических опор, стальных частей для горнов, охлаждение электродов);
  • загрузочные бадьи;
  • скрапное отделение;
  • частотные преобразователи для индукционного нагревания;

Вторичная металлургия

  • обессеривание стали;
  • гомогенизация стали;
  • электрошлаковый переплав;
  • создание вакуума;

Ковшовая технология

  • оборудование LF типа;
  • оборудование SL типа;

Ковшовое хозяйство

  • крышки литейных и разливочных ковшей;
  • литейные и разливочные ковши;
  • шиберные затворы;

Оборудование непрерывной разливки стали

  • разливочная поворотная станина для манипуляции с промежуточными ковшами и ковшами;
  • сегменты оборудования непрерывной разливки;
  • вагонетки промежуточных ковшей;
  • аварийные лотки и сосуды;
  • промежуточные ковши и подставки для складывания;
  • пробочный механизм;
  • передвижные мешалки чугуна;
  • охлаждающее оборудование;
  • выводные участки непрерывной разливки;
  • металлургические рельсовые транспортные средства.

Таким образом производство стали — это сложный технологический процесс, сочетающий базовые химические принципы получения железа, в сочетании с технологиями отливки стали.

Ссылка на promplace.ru обязательна

Источник: https://promplace.ru/articles/proizvodstvo-stali-31

Производство стали – технология, этапы, оборудование

29.10.2017

Производство стали сегодня осуществляется в основном из отработанных стальных изделий и передельного чугуна. Сталь представляет собой сплав железа и углерода, последнего в котором содержится от 0,1 до 2,14%.

Превышение содержания углерода в сплаве приведет к тому, что он станет слишком хрупким.

Суть процесса производства стали, в составе которой содержится гораздо меньшее количество углерода и примесей, по сравнению с чугуном, состоит в том, чтобы в процессе плавки перевести эти примеси в шлак и газы, подвергнуть их принудительному окислению.

Процесс производства стали

Особенности процесса

Производство стали, осуществляемое в сталеплавильных печах, предполагает взаимодействие железа с кислородом, в процессе которого металл окисляется.

Окислению также подвергаются углерод, фосфор, кремний и марганец, содержащиеся в передельном чугуне.

Окисление данных примесей происходит за счет того, что оксид железа, образующийся в расплавленной ванне металла, отдает кислород более активным примесям, тем самым окисляя их.

Производство стали предполагает прохождение трех стадий, каждая из которых имеет свое значение. Рассмотрим их подробнее.

На данном этапе расплавляется шихта и формируется ванна из расплавленного металла, в которой железо, окисляясь, окисляет примеси, содержащиеся в чугуне (фосфор, кремний, марганец).

В процессе этого этапа производства из сплава необходимо удалить фосфор, что достигается за счет содержания в шлаке расплавленного оксида кальция.

При соблюдении таких условий производства фосфорный ангидрид (Р2О5) создает с оксидом железа (FeO) неустойчивое соединение, которое при взаимодействии с более сильным основанием — оксидом кальция (CaO) — распадается, и фосфорный ангидрид превращается в шлак.

Чтобы производство стали сопровождалось удалением из ванны расплавленного металла фосфора, необходима не слишком высокая температура и содержание в шлаке оксида железа.

Чтобы удовлетворить эти требования, в расплав добавляют окалину и железную руду, которые и формируют в ванне расплавленного металла железистый шлак.

Содержащий высокое количество фосфора шлак, формирующийся на поверхности ванны расплавленного металла, удаляется, а вместо него в расплав добавляются новые порции оксида кальция.

Кипение ванны расплавленного металла

Дальнейший процесс производства стали сопровождается кипением ванны расплавленного металла. Такой процесс активизируется с повышением температуры. Он сопровождается интенсивным окислением углерода, происходящим при поглощении тепла.

Процесс производства стали в электропечах

Производство стали невозможно без окисления излишков углерода, такой процесс запускают при помощи добавления в ванну расплавленного металла окалины или вдувания в нее чистого кислорода.

Углерод, взаимодействуя с оксидом железа, выделяет пузырьки оксида углерода, что создает эффект кипения ванны, в процессе которого в ней снижается количество углерода, а температура стабилизируется.

Кроме того, к всплывающим пузырькам оксида углерода прилипают неметаллические примеси, что способствует уменьшению их количества в расплавленном металле и приводит к значительному улучшению его качества.

На данной стадии производства из сплава также удаляется сера, присутствующая в нем в форме сульфида железа (FeS). При повышении температуры шлака сульфид железа растворяется в нем и вступает в реакцию с оксидом кальция (CaO). В результате такого взаимодействия образовывается соединение CaS, которое растворяется в шлаке, но раствориться в железе не может.

Добавление в расплавленный металл кислорода способствует не только удалению из него вредных примесей, но и увеличению содержания данного элемента в стали, что приводит к ухудшению ее качественных характеристик.

Чтобы уменьшить количество кислорода в сплаве, выплавка стали предполагает осуществление процесса раскисления, который может выполняться диффузионным и осаждающим методом.

Диффузионное раскисление предполагает введение в шлак расплавленного металла ферросилиция, ферромарганца и алюминия. Такие добавки, восстанавливая оксид железа, снижают его количество в шлаке. В результате растворенный в сплаве оксид железа переходит в шлак, распадается в нем, высвобождая железо, которое возвращается в расплав, а высвобожденные оксиды остаются в шлаке.

Производство стали с осаждающим раскислением осуществляется путем введения в расплав ферросилиция, ферромарганца и алюминия. Благодаря наличию в своем составе веществ, обладающих большим сродством к кислороду, чем железо, такие элементы образуют соединения с кислородом, который, отличаясь невысокой плотностью, выводится в шлак.

Производство стали в мартеновских печах

Регулируя уровень раскисления, можно получать кипящую сталь, которая не полностью раскислена в процессе плавки.

Окончательное раскисление такой стали происходит при затвердевании слитка в изложнице, где в кристаллизующемся металле продолжается взаимодействие углерода и оксида железа.

Оксид углерода, который образуется в результате такого взаимодействия, выводится из стали в виде пузырьков, также содержащих азот и водород. Полученная таким образом кипящая сталь, содержит незначительное количество металлических включений, что придает ей высокую пластичность.

Производство сталей может быть направлено на получение материалов следующего типа:

  • спокойных, которые получаются, если в ковше и печи процесс раскисления полностью завершен,
  • полуспокойных, которые по степени раскисления находятся между спокойными и кипящими сталями, именно такие стали раскисляются и в ковше, и в изложнице, где в них продолжается взаимодействие углерода и оксида железа.

Если производство стали предполагает введение в расплав чистых металлов или ферросплавов, то в результате получаются легированные сплавы железа с углеродом.

Если в стали данной категории необходимо добавить элементы, которые имеют меньшее сродство к кислороду, чем железо (кобальт, никель, медь, молибден), то их вводят в процессе плавки, не опасаясь за то, что они окислятся.

Если же легирующие элементы, которые необходимо добавить в сталь, имеют большее сродство к кислороду, чем железо (марганец, кремний, хром, алюминий, титан, ванадий), то их вводят в металл уже после его полного раскисления (на окончательном этапе плавки или в ковш).

Необходимое оборудование

Технология производства стали предполагает использование на сталелитейных заводах следующего оборудования.

Участок кислородных конверторов:

  • системы обеспечения аргоном,
  • сосуды конверторов и их несущие кольца,
  • оборудование для фильтрации пыли,
  • система для удаления конверторного газа.
  • печи индукционного типа,
  • дуговые печи,
  • емкости, с помощью которых выполняется загрузка,
  • участок складирования металлического лома,
  • преобразователи, предназначенные для обеспечения индукционного нагревания.

Участок вторичной металлургии, на котором осуществляется:

  • очищение стали от серы,
  • гомогенизация стали,
  • электрошлаковый переплав,
  • создание вакуумной среды.

Участок для реализации ковшовой технологии:

Ковшовое хозяйство, обеспечивающее производство стали, также включает в себя:

  • крышки ковшей,
  • ковши литейного и разливочного типа,
  • шиберные затворы.

Производство стали также предполагает наличие оборудования для непрерывной разливки стали. К такому оборудованию относится:

  • поворотная станина для манипуляций с разливочными ковшами,
  • оборудование для осуществления непрерывной разливки,
  • вагонетки, на которых транспортируются промежуточные ковши,
  • лотки и сосуды, предназначенные для аварийных ситуаций,
  • промежуточные ковши и площадки для складирования,
  • пробочный механизм,
  • мобильные мешалки для чугуна,
  • оборудование для обеспечения охлаждения,
  • участки, на которых выполняется непрерывная разливка,
  • внутренние транспортные средства рельсового типа.

Производство стали и изготовление из нее изделий представляет собой сложный процесс, сочетающий в себе химические и технологические принципы, целый перечень специализированных операций, которые используются для получения качественного металла и различных изделий из него.

*Предлагаемые к заключению договоры или финансовые инструменты являются высокорискованными и могут привести к потере внесенных денежных средств в полном объеме. До совершения сделок следует ознакомиться с рисками, с которыми они связаны.

Производство стали – технология, этапы, оборудование Ссылка на основную публикацию Производство стали – технология, оборудование, этапы Производство стали – технология, оборудование, этапы

Источник: https://tradesmarter.ru/analitika/prs_proizvodstvo-stali-tehnologiya-etapy-oborudovanie_dd9cb.html

Этапы выплавки стали

На этом этапе идет расплавление шихты и нагрев жидкого металла. Температура металла невысока. Начинается интенсивное окисление железа, так как оно содержится в наибольшем количестве в чугуне и по закону действующих масс окисляется в первую очередь. Одновременно начинает окис-лятся примеси Si, P, Mn.

 Образующийся оксид железа (FeO) при высоких температурах растворяется в железе и отдает свой кислород более активным элементом (примесям в чугуне), окисляя их. Чем больше оксида железа содержится в жидком металле, тем активнее окисляются примеси.

Для ускорения окисления примесей в сталеплавильную печь добавляют железную руду, окалину, содержащие оксиды же-леза.

Скорость окисления примесей зависит не только от их концентрации, но и от температуры металла и подчиняется принципу, в соответствии с которым хи-мические реакции, выделяющие теплоту, протекают интенсивнее при более низких температурах, а реакции поглощающие теплоту, протекают активнее при высоких температурах. Поэтому в начале плавки, когда температура металла невысока, интенсивнее идут процессы окисления кремния, фосфора, марганца, протекающие с выделением теплоты, а углерод интенсивно окисляется только при высокой температуре металла.

Наиболее важной задачей этого этапа является удаление фосфора. Для этого необходимо проведение плавки в основной печи, в которой можно использовать основной шлак, содержащий СаО, применяемый для удаления фосфора.

В ходе плавки фосфорный ангидрид Р2О5 образует с оксидом железа нестойкое соединение (FeO)3⋅Р2О5. Оксид кальция СаО более сильное основание, чем оксид железа. Поэтому при невысоких температурах он связывает ангидрид Р2О5 в прочное соединение , (CaO)⋅Р2О5 переводя его в шлак.

Для удаления фосфора из металла шлак должен содержать достаточное количество оксида железа FeO. Для повышения содержания FeO в шлаке в сталеплавильную печь в этот период плавки добавляют железную руду, окалину, наводя железистый шлак.

По мере удаления фосфора из металла в шлак содержание его в шлаке возрастает.

В соответствии с законом распределения, когда вещество растворяется в двух несмешивающихся жидкостях, распределение его между этими жидкостями происходит до установления определенного соотношения постоянного для данной температуры. Поэтому удаление фосфора из металла замедляется и для более полного удаления фосфора из металла шлак, содержащий фосфор удаляют, и наводят новый со свежими добавками (CaO).

Второй этап

Этап начинается по мере прогрева металлической ванны до более высоких температур, чем на первом этапе. При повышении температуры более интенсивно протекает реакция окисления углерода, проходящая с поглощением тепла. Для окисления углерода на этом этапе в металл вводят зна-чительное количество руды, окалины или вдувают кислород.

Образующийся в металле оксид железа реагирует с углеродом и пузырьки оксида углерода СО выделяются из жидкого металла, вызывая кипение ванны. При кипении ванны:

  • уменьшается содержание углерода в металле;
  • выравнивается температура и состав ванны;
  • удаляются частично неметаллические включения в шлак.
  • Все это способствует повышению качества металла.

В этот же период создаются условия для удаления серы из металла. Сера в ванне находится в виде сульфида железа, растворенного в металле [FeS] и шла-ке (FeS).

Чем выше температура, тем большее количество FeS растворяется в шлаке или больше серы переходят из металла в шлак.

Сульфид железа, раство-ренный в шлаке, взаимодействует с оксидом кальция СаО, также растворенным в шлаке, образуя соединение CaS, которое растворимо в шлаке, но не растворя-ется в металле. Таким образом сера удаляется в шлак.

Третий этап

Этот этап является завершающим, в котором производится раскисление и, если требуется, легирование стали.

 Раскисление представляет собой технологическую операцию, при которой растворенный в металле кислород переводится в нерастворимое соединение и удаляется из металла. При плавке повышенное содержание кислорода в металле необходимо для окисления примесей.

В готовой же стали кислород является нежелательной примесью, так как понижает механические свойства стали, особенно при высоких температурах.

Для раскисления стали используют элементы-ракислители, обладающие большим сродством к кислороду, чем железо. В качестве раскислителей используют марганец, кремний, алюминий. Существует несколько способов раскисления стали. Наиболее широко применяются:

  • осаждающий способ;
  • диффузионный.

Осаждающий способ

Раскисление по этому способу осуществляют введением в жидкую сталь раскислителей (ферромарганца, ферросилиция, алю-миния), содержащих Mn, Si, Al.

В результате раскисления образуются оксиды MnO, SiO2, Al2O3, которые имеют меньшую плотность, чем сталь, и удаляются в шлак. Однако часть оксидов не успевает всплыть и удалится из металла, что понижает его свойства.

Этот способ называют иногда глубинным, так как рас-кислители вводятся в глубину металла.

Диффузионный способ

По этому способу раскисление осуществляют раскислением шлака. Ферромарганец, ферросилиций и другие раскислители загружают в мелкоизмельченном виде на поверхность шлака. Раскислители, восстанавливая оксид железа, уменьшают его содержание в шлаке.

В соответс-твии с законом распределения оксид железа, растворенный в стали, начнет пе-реходить в шлак.

Образующиеся при таком способе раскисления оксиды остаю-тся в шлаке, а восстановленное железо переходит в сталь, что уменьшает в ней содержание неметаллических включений повышает ее качество.

Ввиду того, что скорость процесса перемещения кислорода из металла в шлак определяется скоростью его диффузии в металле, этот способ имеет и не-которые недостатки. Из-за малой скорости диффузии кислорода в металле про-цесс удаления кислорода идет медленно, возрастает продолжительность плавки. В зависимости от степени раскисленности различают стали:

  • кипящие;
  • спокойные;
  • полуспокойные.

Кипящая сталь

Это сталь, выплавленная без проведения операции рас-кисления. При разливке такой стали и при ее постепенном охлаждении в излож-нице будет протекать реакция между растворенными в металле кислородом и углеродом[O]+[C]=COг

Образующиеся при этом пузырьки оксида углерода СО будут выделятся из кристаллизующегося слитка, и металл будет бурлить. Такую сталь называют кипящей. Кипящая сталь практически не содержит неметаллических включений, представляющих продукты раскисления. Поэтому она обладает хорошей пластичностью.

Спокойная сталь

Это сталь, полученная после проведения операции рас-кисления. Такая сталь при застывании в изложнице ведет себя спокойно, из нее не выделяются газы. Такую сталь называют спокойной.Полуспокойная сталь.

Сталь имеет промежуточную раскисленность между спокойной и кипящей. Раскисление ее проводят частично, удаляя из нее не весь кислород. Оставшийся кислород вызывает кратковременное кипение металла в начале его кристаллизации.

Такую сталь называют полуспокойной.

Легированные стали

Легированием называют процесс присадки в сталь специальных (легирующих) элементов с целью получить так называемую леги-рованную сталь с особыми физико-химическими или механическими свойствами. Легирование осуществляют введением ферросплавов или чистых металлов в необходимом количестве в сплав.

 Легирующие элементы, сродство к кислороду которых меньше, чем у же-леза (Ni, Cu, Co, Mo), при плавке и разливке практически не окисляются и по-этому их вводят в печь в любое время плавки. Легирующие элементы, у которых сродство к кислороду больше, чем у железа (Si, Mn, Al и др.

), вводят в металл после или одновременно с раскислением.

Источник: https://MetalSpace.ru/education-career/osnovy-metallurgii/proizvodstvo-stali/406-etapy-vyplavki-stali.html

Ссылка на основную публикацию